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We are interested in fitting two-dimensional, Gaussian
*conditional Markov random field (CMRF) models to images.

The given finite image is assumed to be represented on a
finite lattice of specific structure, obeying a CMRF model
driven by correlated noise. The stochastic model is char-
acterized by a set of unknown parameters. We describe two
sets of experimental results. First, by assigning values
to parameters in the stationary rangc, two-dimensional pat-
terns are generated. It appears that quite a variety of
patterns can be generated. Next, we consider the problemof estimating the unknown parameters of a given model for animage, and suggest a consistent estimation scheme. We also

implement a decision rule to choose an appropriate CMRF
model from a class of such competing models. The usefulness
of the estimation scheme and the decision rule to choose an
appropriate model is illustrated by application to synthetic
patterns. Unilateral approximations to CMRF models are
also discussed.

The support of the U.S. Air Force Office of Scientific
Research under Grant AFOSR-77-3271 is gratefully acknowledged,
as is the help of Sherry Palmer and D. Lloyd Chesley in pre-
paring this paper. The author is indebted to Profs. R.L.
Kashyap and A. Rosenfeld for helpful discussions.

io kC A.C .. 2IrTFC S iRE 1-j (AFSC)

- t, A.., Z QV. ,,, and is '
": I,.,. '.,J]) -12 (7b).

_ *' , :: i i " '. ' . ) Officer

till rv I Ii -



_______rl - I.CT ;N

REPORT DOCUMENTATION PAGE B <1.:AK ccM'r;N(rx
I. REPORT t ljMBER 12. GOVT A ESSION N,.i 3 RECIPEN TS ATALC;V .'MSERT FOR- Z/ ,,

4. 717TL E C,,,d 5 title) 
5 -YPC OF REPORT a PFk:OD CCVE _FZ1

FITBING MARKOV RPND1M FIELD MOdD,,FSTO IMAGES interim

6 PERPORM,N3 O- . "EPOr N '4Um5 .,

7. AUTHOR'.,) j. CONTRACT Ok GRANT NUMBER11,

R. Chellappa

VAFOSR-77-3271

9 PERFORMING ORGAIL2A->ON NAME AND ADDRESS T 10. PR )51AM ELFM' -NT ,PP3 >T A - I
University of Makryland AREA a WDRK UNT -YNB S '

Computer Science Department,-
College Park, kl. 20742 I 611C2F 2304/A2

II. CONTROLLING OF,CE NAME AND ADDRESS 1 2. REPORT DATE

Air Force Office of Scientific Research LJanuary 19811
13. NMF R OF PA5ES

14 MONITD FRIN G A3D NCY N AM E S AODC RF SS 1t ,.' tron ( r '. , rflo in , . 15. SECU RITY CZ.ASS ,, !- . L

I LLI.. .LC ASS F I E . . . .
IS.. D E ,L A SSIFIC A T I O,, N - 'N DR

5Z EDJLE

16. DISTRI BUTION STATEMENT 'of his 1Rep-rt)

A•provod for public release; distribution unlimited.

17 D IS T R iE U T IO N S T A T E M E N T " th e a b s t ac t e- r, 7 . i -i k ? , h ,5tf ter . t r cn R p o rt)

18. SUPPLEMENIARY NOTES

q1 9 K E Y O l O R O S ( C o tu i t i ne ,: ; r e r s e ,s d e i f , c-ss a V i t il e nt ; v ho b l c k n u nb e r ;

Imge processingZ, Pattern recognit ion

Ima,;e modelsRandom fields
Texre al ysis

0 ABSTRACT (Coti-n e din reverse i e If s e eIt - r. n. d i en iy lf ,' l orK numter)

4e are interested in fitting two-dimensional , Gaussian conditionai Marko\
random field (CMRF) models to images. The given finite image is assuad to be
represented on a finite lattice of specific structure, obeying a C0WF model
drven by correlated noise. The stochastic model is characterized by a set
of un1known parameters. We describe two sets of experimental results. First,
by assigning values to parameters in the stationary range, two-dimensiona]
patterns are generated. It appears that quite a variety of patterns can bei ecerated, Ne.-:. we consider the orobl Pm n of oe-,ti mnqt- t3_.. ha-urmtr"-,5

a D ' ,'l 1473 EDITION OF 1 NOV 5 IS OBSOLETE T

, F C'- P TY CLASSiFCAT -N OF TH,, I'A:;I ,G ,e , " ' . '1)

-0 
._7



SECkiRITY CLAS.FiCATioN CFIgo e

f a given model for an imagel, Mnd Sugge0st a 2,onsistcnt estimavtion scheme. We 1
iso implement a decision rule to choose an appropriate Cr model from a class
f such competing models. The usefulness of the estimation scheme and the
lecision rule to 'choose an appropriate model is illustrated by applicat-ion to
;ynthetic patterns. Unilateral approximations to CMRF modleCs ar1e also discuSed.

Di-t SPOCial

pEUI'CASFCTO P""P -

I- o



1. Introduction

Conditional Markov random field (CMRF) models have many

applications in image processing and analysis; for instance,

they can be used for the design of image restoration algo-

rithms [1-4], for characterization of textures [4-7], and for

image coding [4] applications. Apart from their applications

in image processing, CMRF models are an active research topic

in the statistical literature [8-91.

Typically, an image is represented by two-dimensional

scalar data, gray level variations defined over a square grid.

One of the important characteristics of such data is the stat-

istical dependence of the gray levels within a neighbor set.

For example, y(i,j), the scalar gray level at position (i,j),

might be statistically dependent on the gray levels over a

neighbor set that includes {(i-l,j),(i+l,j),(i,j-l),(i,j+l)}.

Due to the lack of a natural preferred direction in the grid

as compared with the discrete time interpretation of one-dim-

ensional Markov processes, the classical definitions of "past"

and "future" are not generalizable to Markov random fields.

Suppose that we assume that y(i,j) is statistically dep-

endent on the nearest neighbors along the east, west, north

and south directions. Then the Markov property in the cor-

responding CMRF model is induced by requiring that the con-

ditional probability distribution of y(i,j), given the values

at all other sites, should depend only upon the values at the

four sites nearest to (i,j), namely, y(i-l,j), y(i+l,j),

y(i,j-l) and y(i,j+l). Wider classes of CMRF models can be



considered by including dependence upon the values at more

remote sites. For instance, corresponding to the first order

Markov model mentioned above, we can have a second order CMRF

model that includes dependence on the eight nearest neighbors,

and so on. In this paper, we are primarily interested in

Gaussian Markov fields, i.e., the conditional distribution of

y(i,j) given all other lattice observations is normally dis-

tributed with a mean that is a lin-ar function of the obser-

vations at neighboring sites and with constant variance

(say) v. In these models, the observation at y(i,j) is

written as a linear weighted sum of the observations over the

corresponding neighbor set and a correlated noise sequence, and

is characterized by a set of coefficients and the variance of

the noise driving the model.

Prior to the use of these models, two problems have to

betackle, namely, the estimation of the unknown parameters

and the choice of an appropriate neighbor set for the given

image. The first problem has received some attention in the

literature. Besag [8] developed coding schemes for the

estimation of parameters in CMRF models and maximum like-

lihood (ML) estimation schemes [9] for a first order isotropic

CMRF model, by assuming a Gaussian structure for the noise.

In the coding method the grid points (or sites) are divided

into two sets (say A and B), such that the conditional dis-

tributions of gray levels associated with the members of set A

given the observed gray levels at all other grid points are



mutually independent. Once the forms of the conditional dis-

tributions are specified (except for a few unknown parameters),

an expression for the conditional likelihood can be written,

as the product of the conditional distributions over the

members in set A. By maximizing this likelihood function,

conditional maximum likelihood estimates of the unknown para-

meters can be obtained. One of the main disadvantages of this

method is that the estimates thus obtained are not efficient

[9] due to a partial utilization of the data. Though by com-

plicated coding schemes [10], the utilization rates may be

improved, the basic problem still remains. Also, for a par-

ticular CMRF model, more than one coding scheme can be realized,

yielding several estimates likely to be highly dependent. Some

arbitrary methods are used to combine these estimates. This

coding approach has been used for the analysis of geographical

data [8] and, very recently, in texture analysis [7] for the

case of binomial variables.

Unlike the cases of one-dimensional time series models

or two-dimensional unilateral models, deriving an expression

for the likelihood of the observations poses some difficulties

for CMRF models that include dependence on neighbors along

all directions. This is due to the fact that the Jacobian

of the transformation matrix from the noisy variates to the

observations is difficult to evaluate. The problem of eval-

uating this determinant can be avoided by making assumptions

about the representation of the underlying lattice. Specif-

ically, by assuming representation on a toroidal lattice



(4-6,9], explicit expressions can be derived for the de-

terminant term, as the transformation matrix possesses a

block circulant structure whose eigenvalues can be written

down explicitly. We use this representation and write

explicit expressions for the likelihood of the observations.

Since the likelihood function is nonquadratic in the para-

meters, the estimates are determined by using numerical

optimization procedures such as Newton-Raphson, etc.

An alternative estimation scheme that yields consistent

estimates for the parameters is given. These estimates are

similar to the "least square" estimates in autoregressive

time series models (we point out later the inappropriateness

of using the term "least square" estimates in CMRF models).

The estimation method does not involve computations by gra-

dient methods, but involves inverting an mxm symmetric matrix

for a CMRF model with dependence on 2m neighbors.

The second problem considered in fitting CMRF models is

the choice of appropriate neighbors in images. From one

dimensional time series analysis it is known that the use of

an appropriate model leads to good results in forecasting

and similar applications. This problem has been considered

in the literature [4]; the decision rules developed are

:3asymptotically consistent, transitive and parsimonious. They

are based on the corresponding decision rules for discrim-

inating between different autoregressive models [11]. We

implement such a decision rule for choosing between different

neighbor sets.



The usefulness of the estimation scheme and the decision

rule for the choice of neighbors is demonstrated by application

to synthetic patterns, the underlying true model of the syn-

thetic patterns being known. This leads us to the problem

of generating synthetic patterns. Computationally elegant

solutions using torus representations for generating synthetic

patterns obeying CMRF models have been developed in [4]. We

use this approach to generate a number of two-dimensional

Markov patterns. The patterns are quite varied and some of

them possess repetitive periodic patterns. One of these syn-

thetic patterns is used for illustrating the usefulness of

the estimation scheme.

In a previous paper [12], we considered fitting another

class of spatial autoregressive models, the so-called sim-

ultaneous autoregressive (SAR) models. Specifically we sug-

gested an approximate ML estimation scheme and implemented a

decision rule for the choice of appropriate neighbor sets.

The CMRF models considered in this paper are non-equivalent

to the SAR models considered in [12], in that given a SAR model

an equivalent CMRF model can always be found (usually with

more parameters); however, the converse is not true. For

instance, there is no equivalent SAR model for the first order

CMRF model. The SAR models can be thought of as higher order

AMarkov models. For instance, the conditional probability

distribution function of a four-neighbor SAR model with dep-

* endence on the east, west, north and south neighbors is a



function of the eight nearest neighbors and the second

nearest neighbors on the east, west, north and south. Some

of these points are illustrated later using synthetic patterns.

Another topic in this paper is unilateral approximation to

CMRF models. Following Besag [8], we define the unilateral

neighbor set of any site (i,j) in the positive quadrant to

consist of those sites (k,Z) on the lattice which satisfy

either (i)Z<j or (ii)Z=j and k<i. Such neighbor sets are of

interest in Kalman filtering of noisy images [1,13]. We take

a specific case of a first order CMRF model and discuss several

unilateral approximations. The patterns corresponding to

the first order CMRF model and its unilateral approximations

look very similar in structure.

The organization of the paper is as follows: In Section 2,

we consider the estimation problem and suggest a consistent

estimation scheme. The implementation of the decision rule

for the choice of appropriate neighbors is discussed in Section

3. In Section 4 experimental results are given.

L4
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2. Estimation of Parameter in CMRF Models

Assume that the observations {y(s),sE} have zero

mean and obey the CMRF model in (2.1), the neighbor set

of dependence being denoted by N1:

y(s) = E ek,k[y(s + (k,9)) + y(s - (kk))] +
(k, P) EN1  (2.1)

, e(s) , sQ

In (2.1), N1 is a neighbor set such that if (k,2)EN 1 , then

(-k,-Z) iN, i.e., in our notation N1 = {(0,),(1,0)} means

that the pixel at (i,j) is statistically dependent on

neighbors {(0,i),(0,-i),(i,0),(-1,0)}. The noise sequence

e(s) is correlated with zero mean and unit variance and

(9,v) are unknown.

Let

q(s) = col[y(s + (k,Z)) + y((s) + (-k,-£)),(k,£)kN I ]

Then for a CMRF model we have

E(e(s)q(s)) = 0 , Vs (2.2)

To ensure homogeneity, the coefficients {6k ,(k,k)Nl}, must

obey
'ij (0) > 0 (2.3)

where

4T
.4ij (0) = (1-29 Oij) (2.4)

and

ij = colicos 27((i-l)k + (j-i)2),(k,Z)rNI]  (2.5)

For a finite image, and a CMRF in which neighbors in

all direction are considered, some of the neighbors for the



boundary sites are not defined. Several different assump-

tions can be made regarding the distribution of these pixels

[4] [143. In this paper we assume that the image is folded

on a toroidal lattice such that, for all (i,j)ER,

y[(s) + (ilJl) ] y(s) + (il-l,j1 -l)mod M + 1] (2.6)

This assumption ensures that all the relevant neighbors of

any y(s) belonging to the finite image are well defined.

Letting e be the lexicographic ordered array of {e(s),s Q),

(2.1) can be rewritten as

H()y e (2.7)

where

w= col[Ok, Z, (k,Z )E N ]

H(e) is a block circulant matrix

HII H1,2 HI M

HIM H1,i H1,2 HIM-1
H(O)

• .(2.8)

H 1,2 HI1

and each component matrix HI' j is circulant. For example,

when N1  f(0,1),(l,O)} we have

H HI, 1  circulant (1,a 0,i,0 , . . . , @0 0 , _ I )

.4
H1, 2  circulant (0 1,0 ,0, ... ,0 )

HiM circulant (0- 1,0' 0' .,0)

and H1  =0 + 1,2,...,M

,U'.,



Given an image, we are interested in fitting a

CMRF model to it. This problem has received some attention

in the literature. In [8], Besag developed coding schemes

for estimation, and ML schemes were used in [9] for simple

CMRF models. As mentioned before, the coding approach

yields inefficient estimates due to a partial utilization

of data. ML estimates can be derived by assuming some

appropriate distributions for the noise sequence {e(s),sEQ}.

Assume, for instance, that e(s) is distributed normally with

zero mean and unit variance. Using this assumption, the

log likelihood function £n p(y]O,v) can be written as

in p(ylO,v) = in det H(O) - (M 2/2)tn2nv - 1 y TH()y (2.9)
2v~

From the theory of block circulant matrices,

in det H(8) = Z £nVI'-() (2.10)
~ (ij)E 'Q

Using (2.4), (2.9) and (2.10) we have
T 2

in p(y jav) = in (i-208.i) - (M /2)£n 2rv~ ~ (i, j)E S1~

_1 y (0) y
2v - ~ - (2.11)

Since H(O) is a block-circulant matrix, it is diagonalized

by a two-dimensional FFT, with eigenvalues Vij' (0). Using

this fact, we have

y TH(O)y = Z 11 z(A ij) (1-26T ij)

where z( ij) are the Fourier transforms of y(s), sk and

.



A (21(i-1),2 (j-l)). Substitution of (2.12)into (2.11)

gives

9n p(yf0,v) = Z Zn (1-2TTi j ) - (M2 /2) Zn 2wv
2 OT (2.13)

22T1 Ilz (A. *j) (1-20 .. )

Note that the contribution of the exponent term of the

likelihood function is linear in 0, unlike the case of SAR

models [12], where this term is quadratic. Consequently,

the notion of least squares estimates does not extend to

CMRF models. Numerical optimization procedures such as

Newton-Raphson can be applied to obtain ML estimates. The

ML estimates thus obtained are asymptotically consistent

and efficient. However, the computation of ML estimates

might become expensive due to the calculation of the

gradients of the log likelihood function. An approximate

ML estimation scheme for CMRF models, without substantial

sacrifice in accuracy, is considered elsewhere [15]. To

avoid these computational difficulties, we suggest the

following estimation scheme: consider the estimates

0 = [Z q(s)q'Is)] (Z q(s)y(s)) (2 14)

and 1 (y(s) - T 2 (2.15)

The easily computable estimate 0 is asymptotically consistent,

as we will now prove.

Theorem 1: Let y(s),sEQ be the set of observations obeying

5'



the CMRF model (2.1). Then the estimate 60 is consistent.

Proof: From (2.1) and (2.14),

T -1 T2= [E q(s)q (s)] (Z q(s)(0 q(s) + / e(s))

+ q(s)q T(s)]i/e(s) (2.16)

Equivalently,

[E q(s) q(s)] (0 0-~) = Aie(s) (2.17)
~T

Since the matrix Z qfs)q T(s) is positive definite, and

E(q(s)e(s)) = 0 with probability 1, the assertion of the

theorem follows.

However, the estimate 2o is not efficient since it is

not equal to the ML estimate obtained by maximizing (2.13).

In this paper we use the estimate in (2.14) and (2.15) for

simulation studies.

I
J~



3. Model Selection

We briefly discuss the decision rules for the choice

of appropriate CMRF models. The importance of appropriate

model selection was illustrated in the case of SAR models

[12],[15], using synthetic patterns. Specifically, it

was shown that the quality of reconstruction varied con-

siderably depending upon the underlying model. We can ex-

pect a similar situation with respect to CMRF models. The

problem of choosing an appropriate CMRF model becomes

difficult due to the rich variety of possible model

structures. Suppose we have an original image, say a 64 x

64 window from one of the Brodatz textures, and we fit

different CMRF models to the texture. It can be argued

that by visual inspection of the reconstructed patterns

corresponding to the different fitted models, a decision

can be made regarding the appropriate model. However, there

are several objections to this procedure. First, the

decision rule is subjective and no quantitative measure

of possible error in the decision is given. More signifi-

cantly, the reconstructed patterns corresponding to an

original RF model and another RF model which includes the

3original model and some extra neighbors look very similar.
Hence, a decision based on visual inspection is unreliable.

Also, given an arbitrary image pattern, no original to

i



compare with being available, it should be possible to

choose on a quantitative basis an appropriate model from

a family of such models. In the context of this paper,

different CMRF models should be interpreted as representing

different neighbor sets N1 .

The problem of choosing appropriate CMRF models has

received some attention in the literature. The possible

approaches are usiny pairwise hypothesis tcsting procedures

[7-8], Akaike's information criterion (AIC) [16], and the

Bayes approach [11] [17]. The main criticisms of the

pairwise hypothesis testing approach for CMRF model selection

are that the resulting decision rules are not transitive

[11], and the decision rules are not consistent, i.e.,

the probability of choosing an incorrect model does not

go to zero even as the number of observations goes to

infinity. When coding schemes are used, more than one

coding scheme results for the same data. It might well

turn out that the null hypothesis may be rejected on some

coding schemes but accepted on some other coding schemes

for the same data; some ad hoc methods leading to very

conservative decisions [7-8] are used to overcome this

problem. When it is required to choose between a first order

CMRF model and a second order CMRF model, to ensure that the

likelihoods are comparable, the cuding scheme corresponding to

the second order CMRF model should be used for the first order
0

CMRF model also, causing further loss of efficiency in est-

imation for the first order model. Also, frcm a philosophical

point of view, the pairwise hypothesis testing procedure is



not suitable for choosing from a family of different CMRF

models. This methodology is well suited for classical prob-

lems such as drug testing where the distribution under the

null hypothesis that the drug is not effective is specified

and the consequences of rejecting the null hypothesis

when it is not true (type I error) are crucial. On the

other hand, in the model selection problem, we are only

inturested in choosing a model that can reasonably account

for the observed statistical phenomena. When the problem

is posed in such a way that the null hypothesis is a

specified CMRF model, and the alternative is its negation,

the consequences of type I error are not serious. In

other words, we cannot take a subjective view of any

specific hypothesis, or equivalently any specific CMRF

model, as is implicitly required in pairwise hypothesis

testing procedures.

The model selection problem comes under the category

of multiple decision problems. A method that is well suited

for this problem would be to compute a test statistic

for different models and choose the one corresponding to

the minimum. The AIC criterion and the Bayes method are

two such procedures. The AIC statistics can be formulated

from the expression of the log likelihood function given

in Section 2; the best model is the one which minimizes

the AIC statistic. The method gives transitive decision

rules but is not consistent even for one-dimensional

54~



autoreqressive models [181. Hence it is not advisable

to use the AIC method for CMRF model selection.

We formulate the problem and suggest a decision

statistic that is consistent, transitive and parsimonious.

The actual derivation can be done by using standard Bayes

decision theory, as was done for SAR models in [171.

Suppose we have three sets Nil,N 1 2 ,N1 3 of neighbors con-

taining m !n1,m2 ,m3 members, respectively. Corresponding

to each Nlq, we write the CMRF model as

y(s) = 0  [y(s + (k, Z) + y(s-(k,)I +
(k, Q)EN q

V /-e (s)
q

0qfk,Z + 0, (k,)EN lq, ,V q>0, q = 1,2,3

Then the decision rule [4] for the choice of appropriate

neighbors is: choose the neighbor set Nlq . if

q* = arg min {C } (3.2)
q

where "2

C q -25 'n(l-O qqi j ) + M 2nVq + 2m qn(M2 ) (3.3)

where

T= Col[A (k )EN-q q,k,Z l '

and

d q,i,j = Col[cos 27t((i-l)k + (j-l)Z),(kZ)ENlq]
I.

AD



The model selection procedure consists of computing Cq

for different models, and choosing the one corresponding

to the lowest C q. The factor 2 appears in the third

term of (3.3) to account for the fact that in our

notation m refers to the number of symmetric neighbors.q

5''
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4. Experimental Results

We describe the results of some experiments regarding

the generation of two-dimensional patterns obeying known CMRF

models and estimation schemes developed in Section 2.

Experiment 1: Synthetic generation of two-dimensional

Markov patterns.

From (2.7) we have

H(0)y = /Je (4.1)

where e is a zero mean correlated noise sequence with correla-

tion matrix E(ee T ) = H(O). The synthetic generation is then

done by assigning some arbitrary values in the stationary

region to 0, and using the correlated noise vector e. The

sequence {e(s)} may be generated by using DFT computations

[19], and y can be generated by inverting the matrix H(e).

Since H(e) is a block-circulant matrix, Fourier computations

can be used for generating y. An alternative procedure

developed in [4] is used in this paper. Before proceeding

further, we define the following quantities: denrote the M

Fourier vectors f. , 1 - i,ji- M by

fi col[tj'X ij .... X M7 ~t ]
S, M-I

t 3 = colfl,xli ... IX M-1,M-vector

. = exp[/-i 2i(i-i)]
.4

n

, .



The synthetic generation scheme then is as follows:

y = E(fi xij//i'.j(0)) + al (4.2)
0 1j 1] 1J

where
*T/5 1 3i

= (i,1,...,l) , M -vector

and i. i(0), lri,jrm, are defined in (2.4) and w is an identical

and independently distributed noise sequence of known distribu-

tion. For a proof that such a y indeed obeys underlying CMRF

model, see [4].

We generate the vector w using a Gaussian pseudo-random

nurber generator, generate its Fourier sequence {x i3} by a two-

dimensional FFT, and finally use (4.2). Sixteen such 64x64

images were generated using CMRF models with different neighbor

sets and parameters. The gray scale values of the images were

scaled to lie in the range 0-63. Alternatively, by multiplying

the value of v used by an appropriate constant the same patterns

are obtained without scaling. The details of the models are

given in Table I and the corresponding images are shown in

Fig. 1. It can be seen that the patterns generated are quite

varied and some of them look similar to real textures. Contrary

to the existing belief [20] that spatial autoregressive models

are incapable of exhibiting the local pattern replication

attribute considered an essential ingredient of texture, some

of the windows do exhibit repetitive patterns.

4



We use matrix notation in referring to windows of

images. Diagonal neighbor sets scom to induce diagonal

patterns, as in the windows in positions (l,2),(l,3),(2,2)

and (2,3). The pattern in the window (2,1) corresponding

to a CMRF model with N1 =

(2,0) } can also be generated by a SAR model as shown in

[121 with N = { (0,1) ,(0,-i), (-1,0) ,(1,0) } and 0 = ,0 =

-.12, 00,_1 = 0, 1 = .28 using the procedure outlined in [4-5].

Note that this pattern and the one in window (2,1) of Fig. 1

in [121 are very similar. Likewise the diagonal pattern (2,2)

generated by a CMRF model with N1 ={(-1,1),(,),(2,0),(0,2),

(2,-2), (2,2)) can also be generated by a SAR model with N -

S -i i , i , i ,(1 1 1 ) 1 (- i ,-1 )1 1 (1 i, i = () 1 ,- 1 =  - 1 4 a n d

1 8 _.28. However, the patterns in windows (1,1)

and (4,4) corresponding to a CMRF model with N1 = {(0,l),(i,0)}

cannot be generated by any finite parameter SAR model.

The role played by adding nearest neighbors can be

illustrated using patterns (4,2),(4,3) and (2,1). Window (4,2)

corresponds to N1 = {(i,0),(0,1),(2,0),(0,2)} and produces

horizontally oriented, macrostructured strip patterns. By

adding the symmetric neighbor (1,1) a diffused version in

window (4,3) is produced. When an extra symmetric nearest

neighbor (1,-l) is added we obtain a more microstructured

pattern resembling water. By adding similar neighbors to the

model in (4,1), vertically oriented patterns can be produced.
9
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Experiment 2: The role of parameter values in the

structure of patterns.

To illustrate the role played by the coefficients

in generating the two-dimensional patterns, we consider the

pattern corresponding to the CMRF model N1 =

= 30.000, v = 1.1111, e-ii = .28 and e1,1 = -. 14. The

values of the parameters tried are given in Table II and the

resulting pictures in Fig. 2. Note that as the parameters

are varied, the basic pattern is still retained but the

"busyness" of the pattern is varied.

All the patterns considered thus far were generated

using the same pseudorandom number generator. As illustrated

in Figs. 4 and 6 of [12] for SAR models, different psuedorandom

sequences produce very small perturbations in the patterns.

Experiment 3:

To test the usefulness of the estimation scheme

and the choice of appropriate neighbor sets, experiments were

done with one synthetic pattern. The true model used to

generate the test pattern corresponds to N1 =

CE 
= 30,00, V = 1.1111, 0 = -.14, 61,1 = .28. Using this

CMRF model, the synthetic image (1,1) in Fig. 3 was generated.
"4

But for correct inference purposes regarding the estimation

schemes, the original window (values not scaled for display

purposes) was used. For estimation of the parameters, the

$
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sample mean of the window was subtracted and (2.14) and (2.15)

were used. The test statistic C in (3.3) was also computed.

The actual values of the estimates corresponding to different

neighbor sets are given in Table III and the corresponding

reconstructed images are shown in Fig. 3. Table III shows

that the estimated values corresponding to the true neighbor

sets are close to the true values. Note that when extra

neighbors are added, the corresponding parameter values are

very small. The decision statistics corresponding to the

models considered are given in Table IV and the decision rule

(3.2) picks up the true model.

Fig. 3 shows the images corresponding to the different

neighbor sets in Table III using an identical array of noise

variables. Windows (1,2) and (1,3) correspond to CMRF models

that are subsets of the true rodel and are not as good as the

original in (1,1). Window (1,4) is generated by the true

neighbor set with estimated parameters and is very similar to

(1,I). The pattern (2,1) corresponds to N1 = {(i,0),(0,i)},

which has no common neighbors with the true neighbor set and

is distinctly different from the original. The windows (2,2),

(2,3) and (2,4) look close to the originals since the generating

models include the original neighbor set. But the decision

rule suggested here correctly eliminates these models.

I
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Experiment 4: Unilateral approximations to CMRF models

Unilateral approximations to CMRF models with general

neighbor sets of dependence are of interest for several

reasons. First, the estimation of parameters in unilateral

spatial autoregressive models can be handled similarly to

one-dimensional autoregressive time series models. Secondly,

unilateral neighbor sets make possible a state space representa-

tion of the images, which is useful in Kalman filtering of

images [13]. Though it would be futile to expect that "good"

unilateral approximations can be found for any arbitrary CMRF

model, it would be worthwhile to explore the adequacy of such

approximations even for some specific CMRF models. We consider

the simplest CMRF model with N1 = {(0,1),(1,0)}. As observed

in [8] several unilateral models driven by white noise can be

constructed in increasing order of complexity. The simplest

unilateral model involves dependence on the north and west

neighbors, the next approximation involves dependence on the

north, west and southwest neighbors, and so on. In Fig. 4,

we have shown patterns corresponding to several such approximate

models. Window (1,1) corresponds to the original pattern, and

(1,2) to the same neighbor set as in (1,1) but with estimated

parameters. The pattern in (1,3) corresponds to the unilateral

neighbor set N = ((-i,0),(O,-l)}; the parameters are estimated

, using the least squares method and the pattern was reconstructed

using the method in [5]. This pattern looks surprisingly similar

i' 'I ... ..-"



to (1,1) and (1,2). A careful analysis indicates that this

is to be expected. This unilateral process is defined such

that the probability distribution of y(i,j) given all the

observations in the unilateral region is equal to the prob-

ability distribution of y(i,j) given y(i-l,j),y(i,j-l).

However, for the same unilateral neighbor set, the conditional

distribution of y(i,j) given all others except y(i,j) depends

[8,21] on y(i-l,j),y(i+l,j),y(i,j-l),y(i,j+l),y(i-l,j+l),

and y(i+l,j-l), a CMRF model that "includes" the original

CMRF model with N1 = {(0,i),(l,0)}. As illustrated

in Experiment 3, the patterns corresponding to a CMRF model

with a neighb(cr set N11 and another CMRF model that includes

N11 and some extra neighbors, look very similar. Hence, the

simplest unilateral neighbor set N = ((-1,0), (0,-1)1} seems

to be an excellent approximation to a first order CMRF model.

Several other unilateral approximate patterns and bilateral

patterns corresponding to N = t(0,1),(1,0),(0,-1),(-1,0)}, a

SAR model, are shown in Fig. 4. The details of the models

may be found in Table V. However, in more general situations,

the procedure suggested in [1], based on approximating the

tipectral. derisity of a CMRF model by successive approximations

of unilateral neighbor sets, should be used. The goodness

of approximation can be visually evaluated as described above.

By comparison, the unilateral approximations with

0* N = {(0,-), (-1,0)} or N = {(0,-i),(-i,0),(-ii)1 may not be

* good for SAR models with N = {(-i,0),(i,0),(0,1),(0,-i)},

fo



since the conditional distribution of the latter model

includes more neighbors than the conditional distribution

corresponding to either of the former models.

1



5. Conclusions

We have considered some aspects of statistical inference

methods applied to two-dimensional discrete Markov random fields.

Specifically, we have considered estimation schemes for the

parameters of the Markov model and decision rules for the

choice of an appropriate model. We have illustrated the use-

fulness of the methods by using synthetic patterns. Currently,

work is in progress on testing the estimation schemes using

real textures.
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Table I. Details of CMRF models corresponding to Fig. 1.

For all the models (=30.00, v-1.-111.

image Neighbor set N1  Parameters
(Fig. 1)

(1,1) (i,0),(0,) 0 =.2794, 0 1=.1825

(1,2) (-a,-),(i,) 01,1.28, 0 ,1 = - - 14

(1,3) (-,),(,) 0 1,1=-.14, 0 11=.28

(1,4) (1,0),(1,-i),(0,1),(1,1) 01 ,=.3357, 01,_i=-.25

0 01=.3246, 1,1= - .2126

(2,1) (1,0),(1,-1),C(0,1), a0 =-.206, 01,1 =.0536,

(i,i),(2,0),(0,2) 001 =.4467, 0 1,1=.0536,

S2,0=-.0123, 0 0,2 = - 0580

(2,Z) (1,-l), (1,1), (2,0), el, =-.234 1 1,1 =.4682

(0,2),(2,-2),(2,2) 82,0=-0655, 60,2 =  0655

S2,2=-.0163, 0 2,2 = - 0655

(2,3) (-1,1) ,(,i) - = . 28, 01,i =-.22

(2,4) (1,0),(0,1),(2,0),(0,2), 0 =.12, 00, .10, 0 2, .08,

(3,0) , (0,3) , (4,0) , (0,4) 0 ,2=--09, 3,0 =- . 11,

0, 3= .11, 4,0=-.07, 0 0,4=090,3 046 0- = 0,4

(3,1) (1,0),(0,l),(3,0),(0,3) 0 =16, 0 , .10,

3,0 =. 12, 00,3 = - . 14

(3,2) (1,0),(0,1),(3,0),(0,3) 10 -=.10, 0,1 =.16,
0 =-. 14, 0 , 12

3,0 0 ,3=

(3,3) (i,0), (0,1), (1,1) 0 =.12, 0 = - ' 10,
1,0 0,11

A (-1,1),(3,0),(0,3) 0 1,1=.08, 0 l=- - 09,

0 =-'11' 0 3='11

i I



Image Neighbor set N Parameters
(Fig. s) 1

(3,4) (0,2),(2,0) 60,2=.2794, 62,0=.1825

(4,1) (1,0),(0,1),(2,0),(0,2) 8 ,0= .12, 0 , 24,

02 16, 8 =-.18,0 " ' 0,2

(4,2) (1,0),(0,1),(2,0),(0,2) 8 =-'24, a0, = . 12,
1,0 0,1

02,0=-'18, e0,2 = '1 6

(4,3) (1,0),(0,1),(1,1),(2,0) 0 1,0=-.24, 8 0 =.l12

(0,2) , 82,0 =-.18, 80,2=.16

(4,4) (0,1),(1,0) 0O,=-.12, 0 1,0=.18

'4
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Table II. Values of parameters used to illustrate the
role played by the coefficients in synthesizingpatterns. (x=30.00, v-1.1111, N 171(-II),(II)0

Image Parameters

(Fig. 2) 8-1,1 l,l

(1,1) .28 -.14

(1,2) .24 -.14

(1,3) .20 -.14

(1,4) .16 -.14

(2,1) .28 -.10

(2,2) .28 -.06

(2,3) .28 -.18

(2,4) .28 -.22

(3,1) .26 -.20

(3,2) .24 -.18

(3,3) .32 -.14

(3,4) .34 -.16

_
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Table III. Details of models fitted to the synthetic
data generated by the model with 0-1i = -.14,
e 11=.28, a=30.0, v=l.lll. The estimate
is =30.005.

Image Neighbor set N Estimates of
(Fi. 3) et 1  Coefficients

(1,2) (i,i) 1.1638 0 1,=.3116

(1,3) (-1,1) 1.3520 01 = - .2093

(1,4) (-1,i),(1,1) 1.1033 60 =-.1410

01,1'27875

(2,1) (0,1),(1,0) 1.4934 80Ol=-.0052

1,0 =-.0020

(2,2) (1I 1),1 (111) 1 (1,0) 1.1033 6_ i -14101, 01,=.27877
1,0i

o ,0=-.0051
(2,3) (-i1i)1,(i1i)1,(0,i) 1.1033 6__1,=-.1410 ,  e1,=.278731,0 '

60,1=-.001717

(2,4) (-1,1),(1,1), 1.1033 0 _1,1=-.14101,
(1,0), (0,1) eI1,1= .2 7 8 7 6 ,

01,O=-.0049,

0 =-.0009

01
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Table IV. Test statistics corresponding to the fitted
models in Table Ill.

Ige Test Statistic(Fig. 3)

(1,2) 1583.3

(1,3) 1637.2

(1,4) 1480.6

(2,1) 1676.3

(2,2) 1497.6

(2,3) 1497.1

(2,4) 1514.2

,A
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Table V. Unilateral approximations to the first order
Markov model 6 =.2794, 0,=.1825, a=30.0, V=1.1111.
The estimate & is 30.016.

ImageNeighbor set Estimates of
(Fig. 4) NeighborT Coefficients

(1,2) (-i,0) , (0,-1) 1.3117 6 3634, A =.2550-1,0 0-
(1,3) (-1,0),(0,-l),(i,-i) 1.2991 0_1, =.3575, 8 0,_=.2166

0i-,09 0,-6 =.0944
1,-i

(1,4) (-1,0) , (-1,-i) 1.2991 6 1,0=.3575, 6_1,_ =.0004,

(0,-1),(1,-1) 6 0,_=.2165, 6i,_i=.0944

(2,1) (-l,0), (-2,0) , (-1,-1) 1.2979 6 1,0=.3460, 62, O=.0291,

(0,-),(-2,-1),(i,) ,-.0033, 6o,_=.215 9 ,

-2,-i =0025, 6,1 f. 0934

(2,2) (-l,0),(-2,0), (-l,-1), 1.2976 6 - =.3457, 6 2 .0285,
(-2,-1), (0,-i), (0,-2), 6 =-.0040, 6 = .0019,

-1,-i -2, -1
(1, -1), (1,-2) 6o,_=. 2140, 00, 2--=.0030

6 1 -- 0895, 6 1,2=0127

(2,3) (-1,0) ,(-2,0) ,(-i,-i), 1.2974 0.3457, 2,0 =.0287,

(-2,-i), (-1,-2), (-2 ,-2), 6-_I,_=-.001Z 6_ -f-.0038,

(0,-l), (0,-2), (1,-i) _1,2--.0120 -2,_2=-.0028,

(1,-2) 6 0,1=.2139, 60,2 =.0076,
0, 61-i 1'-2="0132

(2,4) 1.1582 a-_1,0=1,o=.1900,

(0,i), (0,-i) 6.0,_I=60,1=.1387

(SAR model)
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Figure 1. Examples of synthetic generation
of patterns using CMRF models (for
details of the models see Table I).

9i

.1

Figure 2. Patterns produced by models with the
same neighbor set N ={(-l,l),(l,l)},
c=30.0, p=l.llll bul with different sets
of values for the coefficients (see Table II).
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Figure 3. Synthetic patterns corresponding to
original and different fitted CMRF models
(see Table III for details of the fitted
models).

* Figure 4. Several unilateral approximations to
a first order CMRF model (see Table V
for details of the unilateral models).

i
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